Abstract

This paper examines phreatic eruptions which are driven by inputs of magma and magmatic gas. We synthesize data from several significant phreatic systems, including two in Costa Rica (Turrialba and Poás) which are currently highly active and hazardous. We define two endmember types of phreatic eruptions, the first (type 1) in which a deeper hydrothermal system fed by magmatic gases is sealed and produces overpressure sufficient to drive explosive eruptions, and the second (type 2) where magmatic gases are supplied via open-vent degassing to a near-surface hydrothermal system, vaporizing liquid water which drives the phreatic eruptions. The surficial source of type 2 eruptions is characteristic, while the source depth of type 1 eruptions is commonly greater. Hence, type 1 eruptions tend to be more energetic than type 2 eruptions. The first type of eruption we term “phreato-vulcanian”, and the second we term “phreato-surtseyan”. Some systems (e.g., Ruapehu, Poás) can produce both type 1 and type 2 eruptions, and all systems can undergo sealing at various timescales. We examine a number of precursory signals which appear to be important in understanding and forecasting phreatic eruptions; these include very long period events, banded tremor, and gas ratios, in particular H2S/SO2 and CO2/SO2. We propose that if these datasets are carefully integrated during a monitoring program, it may be possible to accurately forecast phreatic eruptions.

Highlights

  • Phreatic eruptions are sudden events, commonly with few if any precursors

  • Phreatic eruptions result from rapid heating and vaporization of fluids which are commonly situated at shallow levels beneath a volcano

  • This paper focuses on phreatic eruptions at volcanic hydrothermal systems that are fed by magmatic input

Read more

Summary

Introduction

Phreatic eruptions are sudden events, commonly with few if any precursors. They can be lethal to people close by, and they commonly precede larger magmatic eruptions. Phreatic eruptions result from rapid heating and vaporization of fluids which are commonly situated at shallow levels beneath a volcano. The fluids involved in phreatic eruptions may originate by downward percolation of meteoric fluids into hot rocks or a hot conduit. They may form from upward migration of volcanic fluids, including gases, supercritical fluids, and melts, into a hydrothermal system or shallow aquifer.

Objectives
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call