Abstract

Developers frequently use inefficient code sequences that could be fixed by simple patches. These inefficient code sequences can cause significant performance degradation and resource waste, referred to as performance bugs. Meager increases in single threaded performance in the multi-core era and increasing emphasis on energy efficiency call for more effort in tackling performance bugs. This paper conducts a comprehensive study of 110 real-world performance bugs that are randomly sampled from five representative software suites (Apache, Chrome, GCC, Mozilla, and MySQL). The findings of this study provide guidance for future work to avoid, expose, detect, and fix performance bugs. Guided by our characteristics study, efficiency rules are extracted from 25 patches and are used to detect performance bugs. 332 previously unknown performance problems are found in the latest versions of MySQL, Apache, and Mozilla applications, including 219 performance problems found by applying rules across applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.