Abstract
Despite significant progress in recycling spent lithium-ion batteries (LIBs), nondestructive, direct recycling methods still face untenable discrepancies in multiple cathode chemistries, which primarily originate from a variety of structure stabilities during the recycling process. Through systematic investigation of the microstructure evolution during the relithiation treatment, we observed the inevitably induced defects and Li/Mn disordering in the LiNi0.5Mn1.5O4 cathode, contributing to the sluggish Li+ transport and irreversible capacity loss. Employing a defect engineering approach to achieve twin boundaries and preferred grain orientation, we show the regenerated cathodes demonstrate a substantial enhancement of Li+ diffusion and cycling stability, retaining 97.4% capacity after 100 cycles and 87.96% after 200 cycles at C/3. This work not only elaborates on a systematic investigation of defect inducement and structural restoration mechanism but also provides an effective approach to directly recycle high-voltage spinel-type cathodes, contributing to the sustainability of next-generation LIBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.