Abstract
The expression of metabolic proteins is controlled by genetic circuits, matching metabolic demands and changing environmental conditions. Ideally, this regulation brings about a competitive level of metabolic fitness. Understanding how cells can achieve a robust (close-to-optimal) functioning of metabolism by appropriate control of gene expression aids synthetic biology by providing design criteria of synthetic circuits for biotechnological purposes. It also extends our understanding of the designs of genetic circuitry found in nature such as metabolite control of transcription factor activity, promoter architectures and transcription factor dependencies, and operon composition (in bacteria). Here, we review, explain and illustrate an approach that allows for the inference and design of genetic circuitry that steers metabolic networks to achieve a maximal flux per unit invested protein across dynamic conditions. We discuss how this approach and its understanding can be used to rationalize Escherichia coli's strategy to regulate the expression of its ribosomes and infer the design of circuitry controlling gene expression of amino-acid biosynthesis enzymes. The inferred regulation indeed resembles E. coli's circuits, suggesting that these have evolved to maximize amino-acid production fluxes per unit invested protein. We end by an outlook of the use of this approach in metabolic engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.