Abstract

The application of Multiobjective Genetic Algorithm optimization (MOGA) to photoemission based ultrafast electron diffraction (UED) beamlines featuring extremely low cathode mean transverse energies has lead to designs with emittances as low as 1 nm for sub-picosecond bunches with 10⁵ electrons*. Analysis of these results shows significant emittance growth during transport: with emittance dilution as high as a factor of 200-4000% for various designs and optics settings. In this study we quantify and model the individual sources of emittance growth (slice mismatches and space charge), and explore the use of the core emittance as a strong invariant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call