Abstract

The aggregation of the amyloid β-peptide into fibrils is a complex process that involves mechanisms such as primary and secondary nucleation, fibril elongation and fibril fragmentation. Some of these processes generate neurotoxic Aβ oligomers, which are involved in the development of Alzheimer's disease. Recent experimental studies have emphasized the role of the fibril as a catalytic surface for the production of highly toxic oligomers during secondary nucleation. By using molecular dynamics simulations, we show that it is the hydrophobic fibril region that causes the structural changes required for catalyzing the formation of β-sheet-rich Aβ1-42 oligomers on the fibril surface. These results reveal, for the first time, the molecular basis of the secondary nucleation pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.