Abstract

AbstractHigh‐entropy alloy (HEA) catalysts have been widely studied in electrocatalysis. However, identifying atomic structure of HEA with complex atomic arrangement is challenging, which seriously hinders the fundamental understanding of catalytic mechanism. Here, we report a HEA‐PdNiRuIrRh catalyst with remarkable mass activity of 3.25 mA μg−1 for alkaline hydrogen oxidation reaction (HOR), which is 8‐fold enhancement compared to that of commercial Pt/C. Through machine learning potential‐based Monte Carlo simulation, we reveal that the dominant Pd−Pd−Ni/Pd−Pd−Pd bonding environments and Ni/Ru oxophilic sites on HEA surface are beneficial to the optimized adsorption/desorption of *H and enhanced *OH adsorption, contributing to the excellent HOR activity and stability. This work provides significant insights into atomic structure and catalytic mechanism for HEA and offers novel prospects for developing advanced HOR electrocatalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call