Abstract

Acid diffusion in chemically amplified resist might limit the ultimate minimum half-pitch that can be achieved with high sensitivity resists unless diffusion length is reduced until new methods of sensitizing resists are found. Precise knowledge of molecular dynamics of resist materials and advanced techniques need to be developed actively for this issue. In this sense, computer simulations have become a valuable tool in terms of reducing time and costs. However, simulations are generally based on continuum or mesoscale models, which are unable to accurately predict variations at the molecular level. Deeper understanding and investigation of the coupled reaction-diffusion kinetics at the molecular scale during the postexposure bake (PEB) become crucial to achieve nanoscale features with good critical dimension control and good line-edge roughness. In this work we have developed a molecular level approach for understanding of the coupled acid-catalyzed diffusion process in chemically amplified resist syste...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.