Abstract

Extrusion force is an important indicator of the effectiveness of a printing material for extrusion-based 3D printing. Finite element method was therefore used to first analyze flow field distribution of selected gels (pumpkin, potato and purple sweet potato gels) undergoing 3D printing and then predict the extrusion force of such gels. Experimental extrusion force was correlated with simulated extrusion force; adequate agreement was noted (R2 = 0.98). Pressure suitable for 3D printing of the gels was determined, being lower than 200 kPa for the tested gels. The extrusion curves indicate that there exists a buffer time after which each gel would start to flow. An increase in the gel water content and a decrease in the nozzle diameter increase the extrusion force and the buffer time. The results of this study may serve as a benchmark for printing materials development and printing parameters selection for successful extrusion-based 3D printing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.