Abstract

Compressed sensing magnetic resonance imaging (CS-MRI) has exhibited great potential to accelerate magnetic resonance imaging if an image can be sparsely represented. How to sparsify the image significantly affects the reconstruction quality of images. In this paper, a spectral graph wavelet transform (SGWT) is introduced to sparsely represent magnetic resonance images in iterative image reconstructions. The SGWT is achieved by extending the traditional wavelets transform to the signal defined on the vertices of the weighted graph, i.e. the spectral graph domain. This SGWT uses only the connectivity information encoded in the edge weights, and does not rely on any other attributes of the vertices. Therefore, SGWT can be defined and calculated for any domain where the underlying relations between data locations can be represented by a weighted graph. Furthermore, we present a Chebyshev polynomial approximation algorithm for fast computing this SGWT transform. The l1 norm regularized CS-MRI reconstruction model is introduced and solved by the projected iterative soft-thresholding algorithm to verify its feasibility. Numerical experiment results demonstrate that our proposed method outperforms several state-of-the-art sparsify transforms in terms of suppressing artifacts and achieving lower reconstruction errors on the tested datasets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call