Abstract

Although various superhydrophobic/superoleophilic porous materials have been developed and successfully applied to separate water-in-oil emulsions through the size-sieving mechanism, the separation performance is restricted by their nanoscale pore size severely. In this study, the wettability of underoil water on fumed silica was experimentally observed, and the underlying mechanism was investigated by carrying out theoretical analysis and molecular dynamic (MD) simulations. Further, we present a novel, facile, and an inexpensive technique to fabricate an underoil superhydrophilic metal felt with microscale pores for the separation of water-in-oil emulsions using SiO2 nanoparticles (NPs) as building blocks. The as-prepared underoil superhydrophilic coating is closed-packed and ultrathin (the thickness is approximately hundreds of nanometers), as well as capable of being coated on a metal felt with complex structures without blocking its pores. The as-prepared metal felt could adsorb water droplets directly from oil, which endowed it with the ability to separate both surfactant-free and surfactant-stabilized water-in-oil emulsions with high separation efficiency up to 99.7% even though its pore size is larger than that of the emulsified droplet. The filtration flux for the separation of span 80-stabilized emulsion is up to ∼4000 L·m-2·h-1. Its separation performance is better than most of the other traditional membranes and superwettable materials used for the separation of water-in-oil emulsions. Moreover, the as-prepared metal felt retained outstanding separation performance even after 30 cycles of use, which demonstrated its excellent reusability and durability. Additionally, the distinctive wettability of underoil superhydrophilicity endued coated metal felt with superior antifouling properties toward crude oil. Overall, this study not only provides a new perspective on separating water-in-oil emulsions but also gives a universal approach to develop unique wettability surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.