Abstract

The first two lineages to differentiate in the mouse embryo are the trophectoderm and primitive endoderm, which give rise to various extraembryonic structures only. Previous work has shown that all derivatives of these two lineages share the property of undermethylation of repetitive DNA sequences, both satellite and dispersed. Here we show that this undermethylation is not a peculiarity of these repetitive elements but is also a feature of structural gene sequences within both lineages. α-Fetoprotein, albumin, and major urinary protein gene sequences all showed extensive undermethylation at MspI restriction sites in extraembryonic lineages, which did not correlate with their expression in these tissues. The same sequences were heavily methylated in embryonic tissues as early as 7.5 days of development. There are, therefore, major global differences in DNA methylation between the earliest cell lineages to be established in the mouse embryo. The significance of these differences for cellular commitment events remains to be elucidated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.