Abstract

5-Fluorouracil is clinically utilized as antitumor drug to treat numerous sorts of malignancy, which is made accessible to the objective tissues in conjugation with transport protein serum albumin furthermore which is low harmful when compared to the other drugs of this family and hence its binding characteristics are therefore of prime interest. The steady state and time resolved fluorescence studies, Fourier transform infrared spectroscopy and circular dichroism studies were employed to explain the mode and the mechanism of interaction of 5FU with HSA. 5-Fluorouracil binding is characterized with one high affinity binding site, with the binding constant of the order of 104. The molecular distance r (1.23 nm) between donor (HSA) and acceptor (5-FU) was estimated according to Forster's theory of non-radiative energy transfer. The feature of 5-Fluorouracil induced structural changes of human serum albumin has been studied in detail by Raman spectroscopy, circular dichroism and Fourier transform infrared spectroscopy analysis. The binding dynamics was expounded by synchronous fluorescence spectroscopy, fluorescence lifetime measurements and molecular modelling elicits that hydrophobic interactions and hydrogen bonding, stabilizes the 5-Fluorouracil interaction with HSA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.