Abstract

Aims: Polyphyllin I, a steroidal saponin in Rhizoma paridis, which possess broad application prospects in cancer prevention and treatment. The purpose of this study was to determine the potential cytotoxicity and mechanism of Polyphyllin I in HepG2 cells.Main methods: In this study, we used MTT to evaluate cell survival. Cell apoptosis rate, cell cycle distribution, mitochondrial membrane potential and ros levels were measured by flow cytometry, and the expression of apoptosis-related proteins was determined by Western blot analysis.Key findings: Polyphyllin I significantly reduced cell viability and induced HepG2 cell apoptosis in a dose and time-dependent manner. Compared with the control group, it could induce reactive oxygen species (ROS) generation and depolarization of matrix metalloproteinases in liver cells. Polyphyllin I dose-dependent increased the release of mitochondrial cytochrome c, and levels of Fas, p53, p21, and Bax/Bcl-2 ratios, as well as the activation of cleaved caspase-3, -8, -9, and subsequent cleavage of the poly (ADP-ribose) polymerase (PARP). The G2/M phase cell cycle arrest was induced by increasing the expression of p21 and cyclin E1, and significantly reducing the expression of cyclin A2 and CDK2.Significance: Our results suggested that Polyphylin I inhibited cell proliferation and growth by triggering G2/M cell cycle arrest, and induced apoptosis through intracellular and extracellular apoptosis pathways to cause cell death by generating reactive oxygen species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.