Abstract
The “titanium fire” as produced during high pressure and friction is the major failure scenario for aero-engines. To alleviate this issue, Ti-V-Cr and Ti-Cu-Al series burn resistant titanium alloys have been developed. However, which burn resistant alloys exhibit better property with reasonable cost needs to be evaluated. This work unveils the burning mechanisms of these alloys and discusses whether burn resistance of Cr and V can be replaced by Cu, on which thorough exploration is lacking. Two representative burn resistant alloys are considered, including Ti14 (Ti-13Cu-1Al-0.2Si) and Ti40(Ti-25V-15Cr-0.2Si) alloys. Compared with the commercial non-burn resistant titanium alloy, i.e., TC4 (Ti-6Al-4V) alloy, it has been found that both Ti14 and Ti40 alloys form “protective” shields during the burning process. Specifically, for Ti14 alloy, a clear Cu-rich layer is formed at the interface between burning product zone and heat affected zone, which consumes oxygen by producing Cu-O compounds and impedes the reaction with Ti-matrix. This work has established a fundamental understanding of burning resistant mechanisms for titanium alloys. Importantly, it is found that Cu could endow titanium alloys with similar burn resistant capability as that of V or Cr, which opens a cost-effective avenue to design burn resistant titanium alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.