Abstract

Underground pipeline safety is a concern among civilians in populated urban cities. Due to the potential for considerable damage from underground pipeline leakages, it is critical to identify potential risk areas. This study developed a simplified risk value using risk assessment software (ALOHA) and geography information systems (SuperGIS and Surfer) to produce potential risk maps for underground pipeline leakage in a major urban city. A risk assessment of areas affected by underground pipeline leakage was performed for vapor diffusion, thermal radiation from combustion, and overpressure from an explosion. The results are applicable to disaster management departments and agencies in highly populated cities.

Highlights

  • In both urban and rural areas, underground pipeline networks are hazardous infrastructure that present a high risk for fire damage and damage to ecosystems

  • The present study developed a simplified risk value (SRV), which was derived using a risk assessment simulation tool named Areal Locations of Hazardous Atmospheres (ALOHA), version 5.4.7 and geography information systems including SuperGIS, version 10.1, and Surfer, version 10 to produce a potential risk map (PRM) for underground pipeline leakage in Taipei, Taiwan [12,13,14]

  • The present study investigated underground pipelines carrying methyl tert-butyl ether (MTBE)

Read more

Summary

Introduction

In both urban and rural areas, underground pipeline networks are hazardous infrastructure that present a high risk for fire damage and damage to ecosystems. Res. Public Health 2020, 17, 3929; doi:10.3390/ijerph17113929 The present study developed a simplified risk value (SRV), which was derived using a risk assessment simulation tool named Areal Locations of Hazardous Atmospheres (ALOHA), version 5.4.7 and geography information systems including SuperGIS, version 10.1, and Surfer, version 10 to produce a potential risk map (PRM) for underground pipeline leakage in Taipei, Taiwan [12,13,14]. The SRV can be used to identify areas at risk of damage from pipeline leakages.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.