Abstract

In this work, underground gas storage (UGS) was studied on a partially depleted gas reservoir through compositional simulation. Prediction of reservoir fluid phase behavior and history matching was done by utilizing detailed reservoir information. The performance of UGS with different scenarios of reservoir depletion, gas injection, and aquifer strength was analyzed. The injection capacity and deliverability of reservoir was set to 350 MMSCF/D (6 months) and 420 MMSCF/D (5 months), respectively. Based on different scenarios and the anticipated target rate, the optimum pressure for converting this reservoir to UGS was found to be about 1600 psia. Also, it was found that if the reservoir is depleted to a lower pressure, it contains insufficient base gas reserve and may not meet the target withdrawal rate. Results showed that this problem can be overcome by injecting higher volume of gas in the first cycle. Furthermore, it was shown that an active aquifer can lead to irreversible reservoir shrinkage, increase in water-gas ratio, and pressure rise in reservoir. Another source of pressure rise during the UGS operations is the difference between z-factors of injected and reservoir fluids. It was found that injecting lean gas with high z-factor into a reservoir containing fluid of lower z-factor results in pressure rise at the end of each cycle. At successive cycles, composition of reservoir fluid approaches that of the injected gas because of continual mixing. Theoretically, composition of reservoir fluid will be near the injected fluid after infinite cycles, provided complete mixing occurs in reservoir. Under these conditions, difference between z-factors of injected and reservoir fluids become smaller, and reservoir pressure stabilizes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.