Abstract

Electrochemical impedance technique has been applied to study the corrosion behavior of galvanized steel under wet–dry cyclic conditions with various drying periods. The wet–dry cycles were carried out for the period of 336 h by exposure to alternate conditions of 1 h immersion in a 0.5 M NaCl solution and drying for various time periods (11, 7 and 3 h) at 298 K and 60% RH. During the wet–dry cycles, the polarization resistance, Rp, and solution resistance, Rs, were continuously monitored. The instantaneous corrosion rate of the coating was estimated from the obtained Rp−1 and time of wetness was determined from the Rs values. The corrosion potential, Ecorr, was also measured only during the immersion period of each wet–dry cycle. In all cases, the corrosion was accelerated by the wet–dry cycles in the early stage, and started to decrease at a certain cycle and finally became similar to that at the initial cycle. The underlying steel corrosion commenced after the corrosion rate started to decrease. The shorter drying period in each cycle led to higher amount of corrosion of the coating because the surface was under wet conditions for longer periods. On the other hand, time to red rust appearance due to occurrence of the underlying steel corrosion became shorter as the drying period increased, although the total amount of corrosion was smaller. The corrosion mechanism of substrate steel under various drying conditions has been discussed, the galvanic coupling effect being taken into account.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.