Abstract
ABSTRACT Supersonic jets with excess gas pressure are associated with many phenomena including radio galaxies, protostars, volcanic plumes, rocket exhausts, and champagne cork popping. Some common properties are derived here based on steady uniform hydrodynamic flow from a circular orifice. We present a systematic numerical study over a wide range of parameters for Mach 2 jets, concentrating on simulations of jets with pressures exceeding the ambient pressure. With cylindrical symmetry, we show how the location of the stand-off and following downstream shocks depend not only on the overpressure but also on the density due to a feedback loop, which results in an oscillatory flow pattern. We conclude that rapidly varying and gradually evolving shock patterns arise even from steady uniform jets. This can take the form of turbulent plumes at high overpressures and regular oscillations at low overpressures. We identify where this screeching contributes to noise and sound wave generation, which may aid the regulation of star and galaxy formation. However, the main effect for such low Mach number jets is to drive a circulatory motion in which the ambient medium is driven out along the axial direction while mass and energy flow laterally inwards, setting up a large advection pattern. Once the initial bow shock has propagated out, the noise from the jet is insufficient to significantly alter the environment. High Mach number jets do not follow these conclusions and will be treated separately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.