Abstract

Crystallization of dry particle assemblies via imposed vibrations is a scalable route to assemble micro/macro crystals. It is well understood that there exists an optimal frequency to maximize crystallization with broad acceptance that this optimal frequency emerges because high-frequency vibration results in overexcitation of the assembly. Using measurements that include interrupted X-ray computed tomography and high-speed photography combined with discrete-element simulations we show that, rather counterintuitively, high-frequency vibration underexcites the assembly. The large accelerations imposed by high-frequency vibrations create a fluidized boundary layer that prevents momentum transfer into the bulk of the granular assembly. This results in particle underexcitation which inhibits the rearrangements required for crystallization. This clear understanding of the mechanisms has allowed the development of a simple concept to inhibit fluidization which thereby allows crystallization under high-frequency vibrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.