Abstract

Previous assessments on rivers in SE China with highly developed economy and enormous population indicate diverse and relatively low particulate heavy metal pollution levels. However, the controlling mechanisms for heavy metal enrichment and transport remain enigmatic. Here, we target a mesoscale mountainous river, the Minjiang River, and obtain grain size, mineralogical and heavy metal concentration (Pb, Cd, Cr, Mn, Mo, Zn, V, Co, Ni, Cu) data from seasonal suspended particulate matter (SPM) near the river mouth, riverbed sediments and SPM samples from mainstream and major tributaries of the river. The results indicate that SPM samples have higher particulate heavy metal concentrations than riverbed sediments collected in pairs. Heavy metal concentrations of Cd, Zn, Cr, V, Co, Ni and Cu are higher in upstream SPM samples than those in downstream regions, whereas Pb, Mn and Mo concentrations don't show this spatial variation. Most heavy metals (e.g., Pb and Zn) show high concentrations in flood seasons and relatively low concentrations in dry seasons, revealing a hydrologic control. However, Cr and Mn show high concentrations in some dry season samples, suggesting incidental anthropogenic input events. The SPM-based pollution assessments using enrichment factor, geoaccumulation index and potential ecological risk index demonstrate that the Minjiang River is moderately to strongly polluted by particulate Pb, Cd, Mo and Zn contaminations and most particulate heavy metals have moderate to considerable potential ecological risks. We contend that transport and discharge of particulate heavy metals by the Minjiang River are controlled by both natural and anthropogenic forcings and the pollution levels are worse than previously known. Our findings suggest that particulate heavy metal discharge by subtropical mountainous rivers is related to sediment types and hydrologic characteristics. Therefore, high-spatiotemporal-resolution investigations on river SPM samples are highly recommended to better evaluate particulate heavy metal pollution levels and aquatic environmental conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.