Abstract

The robustness of complex networks under targeted attacks is deeply connected to the resilience of complex systems, which is defined as the ability to make appropriate response to the attack. In this paper, we study robustness of complex networks under a realistic assumption that the cost of removing a node is not constant but rather proportional to the degree of a node or equivalently to the number of removed links a removal action produces. We have investigated the state‐of‐the‐art targeted node removing algorithms and demonstrate that they become very inefficient when the cost of the attack is taken into consideration. For the case when it is possible to attack or remove links, we propose a simple and efficient edge removal strategy named Hierarchical Power Iterative Normalized cut (HPI‐Ncut). The results on real and artificial networks show that the HPI‐Ncut algorithm outperforms all the node removal and link removal attack algorithms when the same definition of cost is taken into consideration. In addition, we show that, on sparse networks, the complexity of this hierarchical power iteration edge removal algorithm is only O(n log2+ε⁡n).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.