Abstract

Direction of arrival (DOA) estimation for a sparse channel has attracted serious attention recently. Better signal analysis and denoising achieve accuracy in DOA determination. This paper proposes an underdetermined DOA estimation for multiple input and multiple outputs (MIMO) sparse channels. A novel multi-kernel-based non-negative sparse Bayesian learning (MK NNSBL) framework is implemented using the multiplied form of basis vector within the manifold matrix for a defined grid. Meanwhile, virtual antenna locations are reconfigured by exploiting the conventional cuckoo search algorithm (CCSA) for the fine reception of incoming signals on a nonuniform linear array (NULA). The simulated results reveal that the novel approach outperforms in its optimal root mean square error (RMSE) for various signal-to-noise ratio (SNR) limits and the compilation time. The convergence comparative graph indicates the improved performance in the proposed framework over existing algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.