Abstract

In children and adults with attention deficit/hyperactivity disorder (ADHD), a general slowing of spontaneous electroencephalographic (EEG) brain activity and a decrease of event-related potential amplitudes such as the contingent negative variation (CNV) are observed. Additionally, some studies have reported decreased skin conductance level (SCL) in this clinical population leading to the hypothesis of a peripheral hypoarousal, which may be a target of biofeedback treatment in addition to or instead of neurofeedback. To our knowledge, the relationship between SCL and CNV has not been simultaneously investigated in one experiment. Using the theoretical background of the hypoarousal model, this article aims to gain more insight into the differences and correlations of cortical (CNV) and peripheral (SCL) arousal in adults with ADHD. A sample of 23 adults with ADHD and 22 healthy controls underwent an auditory Go-NoGo task with simultaneous 22-channel EEG and SCL recordings. Reaction time (RT) and reaction time variability (RTV) were also measured to assess task performance. Significantly decreased CNV amplitude and significantly higher RTV were observed in the ADHD group, reflecting cortical underarousal and problems with sustained attention. No significant correlation between peripheral underarousal and cortical underarousal was observed in the ADHD group or the control group. The observed cortical underarousal reflected in the decreased CNV supports the notion of a reduced CNV amplitude as a possible biomarker for ADHD. However, the connection between cortical and peripheral arousal is not as clear as is suggested in previous research investigating both separately. Implications of these results for new treatment options for ADHD such as biofeedback are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.