Abstract

Numerous studies have been conducted on three-finger robot hands, which are widely used in industries. These studies led to the development of motorized prosthetic hands for amputees. Although many developers have focused on the functionality of motorized prosthetic hands, prosthetic users place more importance on the human-like motion of the device owing to social implications. Therefore, this study aims to achieve human-like flexion of a three-finger robot hand. Each finger contains three phalanges joined by pivots and torsional return springs. A tendon wire runs through guide pins inside the phalanges up to the linear actuator located in the forearm. When the tendon wire is pulled, the finger is flexed. The return springs are optimally selected based on ADAMS simulations and kinesiology of the human hand. The selection is then verified by experiments

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.