Abstract

The forward and inverse dynamic models of the underactuated 2-DOF finger have been established in this article based on virtual spring approach. This approach not only avoids the solution of differential-algebraic equations but also leads to a completely decoupled dynamic model that is ideal for directly inverse dynamic analysis, real-time dynamic simulation and control. To verify this approach, an underactuated 3-joint finger has been brought forward. Simulation results from Matlab/Simulink are consistent with those obtained from ADAMS grasp simulations. For the hand real-time dynamic control, the velocity observer has been established based on the dynamic model, the adaptive curve fitting with the observer has obtained precise velocity signals, made up the uncertain parameters such as torsion spring, inertial, damps, etc. and achieved ideal results. By applying dynamics model and observer, the force-based impedance control can realize more accurate and stable force control during grasp.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.