Abstract

The charge states of protein ion species generated by electrospray under non-denaturing solvent conditions are strongly dependent on the occurrence of gas phase proton transfer reactions. Thus, by adding basic compounds to an array of model protein solutions, the charged states of multiply charged ions decrease with increasing the gas phase basicity of these additives. The role played by the basic (lysine and arginine) and acidic (aspartic and glutamic acids) amino acid side chains toward the proton exchange processes has been examined by using a series of basic compounds added to the protein solutions. In the present study, no relationship could be established between the presence at the protein surface of basic or acidic residues and the measured charged states. Actually, independently on their amino acid composition, the protein ions show a linear correlation between their mean charge state and their surface considered as a spherical area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.