Abstract
Methionine was subjected to a flame-induced reaction in water or in an aqueous formic acid solution by using a hydrogen (50%)-oxygen (50%), hydrogen (87%)-oxygen (13%) and hydrogen diffusion flame. Besides the already-known stepwise oxidation by a hydroxyl radical, the contribution of a hydrogen atom from the flame to the reaction was recognized when the hydrogen-rich mixtures were employed. Homoserine was obtained under all the reaction conditions employed here, and glutamic acid when employing aqueous formic acid as a solvent. A common intermediate, the 3-carboxy-3-aminopropyl radical, appeared to exist in the reaction pathway. A coupling reaction of this radical with a hydrogen atom, hydroxyl radical and hydroxycarbonyl radical afforded 2-aminobutyric acid, homoserine and glutamic acid, respectively. Lanthionine and S-methylcysteine underwent the same reactions. Increasing the hydrogen content of the fuel and adding formic acid to the solvent resulted in retarding the reaction rate. The latter modification of the reaction system also brought about greater stability of the reaction products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.