Abstract

Evaluation of undecylenic acid (UA) and its tertiary amide N,N-dibutylundecenamide (DBUA) activity­ in vitro against the standard and antibiotic-resistant Escherichia coli and Staphylococcus aureus strains was carried out. The antibacterial potential of the acid and its amide at 2.5 and 5.0 μM concentration both against gram-positive bacteria (S. aureus) and gram-negative (E. coli) cultures was confirmed by monitoring the diameter of the bacterial growth inhibition zones. The docking study identified methionine aminopeptidase (MAP) as the most energy-favorable potential biotarget associated with the drug resistance of E. coli and S. aureus with a binding energy in the range from -8.0 to -8.5 kcal/mol. The ligands complexation was due to the formation of hydrogen bonds with ASP108, HIS171, HIS178, GLU204, GLU235, HIS76, ASP104, GLU233, ASP93 and metal-acceptor interactions with Co2+. Overall, the results indicated that UA and DBUA activity against antibiotic-resistant strains creates prospects for the development of new antibacterial formulations. Keywords: Escherichia coli, methionine aminopeptidase, molecular docking, Staphylococcus aureus, tertiary amide, undecylenic acid

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.