Abstract
There are several known undecidable problems for 3 × 3 integer matrices the proof of which use a reduction from the Post Correspondence Problem (PCP). We establish new lower bounds in the number of matrices for the mortality, zero in the left upper corner, vector reachability, matrix reachability, scalar reachability and freeness problems. Also, we give a short proof for a strengthened result due to Bell and Potapov stating that the membership problem is undecidable for finitely generated matrix semigroups R ⊆ ℤ 4×4 whether or not kI4 ∈ R for any given |k| > 1. These bounds are obtained by using the Claus instances of the PCP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Foundations of Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.