Abstract

We describe Richardson's functor from the Diophantine equations and Diophantine problems into elementary real-valued functions and problems. We then derive a general undecidability and incompleteness result for elementary functions within ZFC set theory, and apply it to some problems in Hamiltonian mechanics and dynamical systems theory. Our examples deal with the algorithmic impossibility of deciding whether a given Hamiltonian can be integrated by quadratures and related questions; they lead to a version of Gödel's incompleteness theorem within Hamiltonian mechanics. A similar application to the unsolvability of the decision problem for chaotic dynamical systems is also obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.