Abstract
Wastewater treatment plants (WWTPs) are suspected reservoirs of Legionella pneumophila (Lp). The required aeration and mixing steps lead to the emission and dispersion of bioaerosols potentially harboring Lp. The aim of the project is to evaluate municipal WWTPs as a possible source of legionellosis through the statistical analysis of case clusters. A space-time scanning statistical method was implemented in SaTScan software to identify and analyze WWTPs located within and close to spatiotemporal clusters of legionellosis detected in Quebec between 2016 and 2020. In parallel, WWTPs were ranked according to their pollutant load, flow rate and treatment type. These parameters were used to evaluate the WWTP susceptibility to generate and disperse bioaerosols. Results show that 37 of the 874 WWTPs are located inside a legionellosis cluster study zone, including six of the 40 WWTPs ranked most susceptible. In addition, two susceptible WWTPs located within an extended area of 2.5km from the study zone (2.5-km buffer) were included, for a total of 39 WWTPs. The selected 39 WWTPs were further studied to document proximity of population, dominant wind direction, and surrounding water quality. Samples collected from the influent and the effluent of six selected WWTPs revealed the presence of Legionella spp. in 92.3% of the samples. Lp and Lp serogroupg 1 (Lp sg1) were detected below the limit of quantification in 69% and 46% of the samples, respectively. The presence of Legionella in wastewater and the novel statistical approach presented here provides information to the public health authorities regarding the investigation of WWTPs as a possible source of Legionella exposure, sporadic cases, and clusters of legionellosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.