Abstract

As a van der Waals (vdW) layered semiconductor material, lead iodide (PbI2) possessing a direct bandgap with strong photoluminescence emission in visible range has gained wide attention in applications of photonic and optoelectronic devices. Here, upconversion photoluminescence (UPL) in exfoliated PbI2 flakes is demonstrated at room temperature and elevated temperatures. The linear power dependence of UPL emission with 532nm excitation suggests the one-photon involved multiphonon-assisted UPL emission process, which is revealed by the temperature-dependent UPL emission measurement. Meanwhile, the nonlinear power dependence of UPL emission with 561nm excitation indicates the transition of UPL emission mechanism from linear to nonlinear regime, and the temperature-dependent UPL emission study further shows that the upconversion is contributed by both the multiphonon-assisted UPL process and the two-photon absorption induced PL process. This study will provide an insight to the understanding of photon upconversion in vdW layered semiconductors and advancing applications in temperature-controlled photon upconversion, tunable photonics, photodetection and imaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.