Abstract

Throughout the world DNA banks are used as storage repositories for genetic diversity of organisms ranging from plants to insects to mammals. Designed to preserve the genetic information for organisms of interest, these banks also indirectly preserve organisms’ associated microbiomes, including fungi associated with plant tissues. Studies of fungal biodiversity lag far behind those of macroorganisms, such as plants, and estimates of global fungal richness are still widely debated. Utilizing previously collected specimens to study patterns of fungal diversity could significantly increase our understanding of overall patterns of biodiversity from snapshots in time. Here, we investigated the fungi inhabiting the phylloplane among species of the endemic Hawaiian plant genus, Clermontia (Campanulaceae). Utilizing next generation DNA amplicon sequencing, we uncovered approximately 1,780 fungal operational taxonomic units from just 20 DNA bank samples collected throughout the main Hawaiian Islands. Using these historical samples, we tested the macroecological pattern of decreasing community similarity with decreasing geographic proximity. We found a significant distance decay pattern among Clermontia associated fungal communities. This study provides the first insights into elucidating patterns of microbial diversity through the use of DNA bank repository samples.

Highlights

  • Understanding biodiversity is an important goal of biology

  • Each Clermontia DNA bank sample used in this study contained fungal DNA

  • In this study we investigated the diversity of phylloplane fungi associated with Clermontia spp. that were collected across the Hawaiian Islands and stored as DNA bank samples

Read more

Summary

Introduction

Understanding biodiversity is an important goal of biology. This is critical in a changing world with habitat degradation and fragmentation, population declines, and species extinctions (Vitousek et al, 1997). DNA banks were initially developed to collect genetic material to create a storage base for evolutionary history, biological diversity, and genomic information (Mattick, Ablett & Edmonson, 1992). Throughout the world, samples are collected and stored in these banks to document and preserve genetic diversity (Spooner & Ruess, 2014). DNA bank samples act as storage deposits for their genomes (Adams, 1994; Spooner & Ruess, 2014)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call