Abstract

Transportation and communication networks are ubiquitous in nature and society. Uncovering the underlying topology as well as link weights, is fundamental to understanding traffic dynamics and designing effective control strategies to facilitate transmission efficiency. We develop a general method for reconstructing transportation networks from detectable traffic flux data using the aid of a compressed sensing algorithm. Our approach enables full reconstruction of network topology and link weights for both directed and undirected networks from relatively small amounts of data compared to the network size. The limited data requirement and certain resistance to noise allows our method to achieve real-time network reconstruction. We substantiate the effectiveness of our method through systematic numerical tests with respect to several different network structures and transmission strategies. We expect our approach to be widely applicable in a variety of transportation and communication systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.