Abstract
Epidermal growth factor receptor (EGFR) is the first growth factor receptor identified in normal cells that is related to the receptor tyrosine kinase, which causes regular cell division. A point mutation in EGFR intracellular kinase domain forces the abnormal cell divisions throughout time, leading to non-small cell lung cancer (NSCLC) transformation. Thus, competitive inhibitors that bind to the ATP binding pocket have been developed as a targeted therapy for NSCLC. The third-generation kinase inhibitor Osimertinib is currently playing a very vital role in the treatment of NSCLC. However, it is not effective toward the C797S kinase domain mutation. For this reason, fourth-generation kinase noncompetitive inhibitors are introduced which work through binding to an allosteric pocket near the ATP binding region and act as a better binding agent for this mutated kinase domain. However, the problem is that these single fourth-generation kinase inhibitors may not be as effective as a single agent. The aim of this work was to apply combinations of these two inhibitors together in different binding regions of EGFR without overlapping the resistance mechanism to obtain the key direct and indirect interactions occurring between them. Moreover, the free energy of dissociation of an inhibitor from its binding sites in the presence of a second inhibitor immobilized in another binding site was also the focus of the study. To realize this aim, we performed conventional molecular dynamics simulations and principal component analysis and dynamic cross-correlation matrices along with umbrella sampling. Our results demonstrated that binding of dual inhibitors triggered conformational changes of the protein more toward the inactive state. Furthermore, allosteric inhibitors bound more strongly to protein kinase EGFR than the orthosteric inhibitors in the presence of dual inhibitors. Finally, the binding mechanism and important hydrogen-bonding residues during unbinding of the inhibitors were fully elucidated. This study provides insight into the binding of the receptor-orthosteric inhibitor-allosteric inhibitor, which can be helpful for further design of novel inhibitors that have a better inhibitory action.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.