Abstract

Investigating the structural evolution and phase transformation of iron oxides is crucial for gaining a deeper understanding of geological changes on diverse planets and preparing oxide materials suitable for industrial applications. In this study, in-situ heating techniques are employed in conjunction with transmission electron microscopy (TEM) observations and ex-situ characterization to thoroughly analyze the thermal solid-phase transformation of akaganéite 1D nanostructures with varying diameters. These findings offer compelling evidence for a size-dependent morphology evolution in akaganéite 1D nanostructures, which can be attributed to the transformation from akaganéite to maghemite (γ-Fe2O3) and subsequent crystal growth. Specifically, it is observed that akaganéite nanorods with a diameter of ∼50nm transformed into hollow polycrystalline maghemite nanorods, which demonstrated remarkable stability without arresting crystal growth under continuous heating. In contrast, smaller akaganéite nanoneedles or nanowires with a diameter ranging from 20 to 8nm displayed a propensity for forming single-crystal nanoneedles or nanowires through phase transformation and densification. By manipulating the size of the precursors, a straightforward method is developed for the synthesis of single-crystal and polycrystalline maghemite nanowires through solid-phase transformation. These significant findings provide new insights into the size-dependent structural evolution and phase transformation of iron oxides at the nanoscale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.