Abstract

The sample size effect on the deformation behavior of metallic glasses (MGs) has recently become research of intense interest. An inverse sample size effect is observed in previous experimental studies; where the yield strength decreases with decreasing sample size, rather than increasing. We propose a theoretical analysis based on the shear banding process to rationalize the inherent size dependence of yield strength, showing an excellent agreement with experimental results. Our model reveals that the anomalous inverse size effect is, in fact, caused by a transition in failure mode; from a rapid shear banding process with a shear band (SB) traversing the entire sample in bulk MGs, to an immature shear banding process with propagated SBs only at the surface in micron-sized MGs. Our results fill the gap in the current understanding of size effects in the strength and failure mechanism of MGs at different length scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.