Abstract
Arenes [C6 H3 R(TMS)(OTf); also called benzyne/aryne precursors] containing inter-related leaving groups Me3 Si (TMS) and CF3 SO3 (OTf) on the adjacent positions (1,2-position) are generally converted to their corresponding aryne-intermediates via the addition of fluoride anion (F- ) and subsequent elimination of TMS and OTf groups. This reaction is believed to proceed via the formation of an anionic intermediate [C6 H4 (TMS-F)(OTf)]- . The EDA-NOCV analysis (EDA-NOCV=energy decomposition analysis-natural orbital for chemical valence) of over 35 such precursors of varied types have been reported to reveal bonding and stability of CAr Si and COTf bonds. EDA-NOCV showed that the nature of the CAr Si bond of C6 H3 R(TMS)(OTf) can be expressed as both dative and electron sharing [CAr Si, CAr →Si]. The CAr OTf bond, on the other hand, can be described explicitly as dative [CAr ←OTf]. The nature of CAr Si bond of [C6 H4 (TMS-F)(OTf)]- exclusively changes to covalent dative σ-bond CAr →S(Me)3F on the attachment of F- to the TMS group of C6 H4 (TMS)(OTf). Introduction of σ-electron withdrawing group (like OMe, NMe2 , and NO2 ) to the ortho-position of the TMS group of functionalized arynes C6 H3 R(TMS)(OTf) prefer to have a covalent dative σ-bond (CAr →Si) over an electron-sharing covalent σ-bond (CAr Si). If this σ-electron withdrawing group is shifted from ortho-position to meta- and para-positions, then the preference for a dative bond decreases significantly, implying that the electronic effect on the nature of chemical bonds affects through bond paths. This effect dies with distance, similar to the well-known inductive effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.