Abstract

We report adjusting the charge-transfer-plasmon (CTP) resonances of aluminum (Al) bowties on suspended monolayer graphene via controlled nanofabrication and focused electron-beam irradiation. CTP resonances of bowties with a conductive junction blue-shift with an increase in junction width, whereas their 3λ/2 and λ resonances barely red-shift. These plasmon modes are derived and confirmed by an LC circuit model and electromagnetic simulations performed with boundary-element and frequency-domain methods. A monotonic decay of the CTP lifetime is observed, while the junction width is extended. Instead, the lifetimes of 3λ/2 and λ resonances are nearly independent of junction width. When the junction is shrunk by electron-beam irradiation, all antenna resonances red-shift. Having created an electron-beam-induced sub 5 nm gap in bowties, we monitor the unambiguous transition of a CTP into a bonding-type gap mode, which is highly sensitive to the separation distance. Meanwhile, the 3λ/2 and λ resonances evolve into dipolar bright and dipolar dark modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call