Abstract

Eutectics in high entropy alloys (HEAs) have shown excellent properties and promising applications. With empirical rules, various of eutectic high entropy alloys (EHEAs) have been proposed. The current design strategies shed light on the formation of eutectics in HEAs, but they are incapable of confirming multiple variables quantitatively in the selection of a specific system. In the present study, the eutectic formation in the multi-principal element systems is uncovered via data mining with machine learning (ML), where the critical elements and strongly associated elements were discovered. Taking the Al–Co–Cr–Fe–Ni system as an example, Al is confirmed to be the critical element for the eutectic formation and Cr is the strongly associated element with Al, Ni, Co, Fe and minor additions with comparably large solid solubility can be considered overall. With these understandings, a three-step approach can be summarized for designing EHEAs in a given system. Within the designed EHEAs, properties can be tested for optimization of application orientated design. The findings can not only accelerate the exploitation of EHEAs with better performance but also provide new ideas for designing compositionally complex alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.