Abstract

The setting of this study is a remote laboratory with a scanning electron microscope (SEM). The SEM is an advanced instrument used by scientists to characterize structures in the nanoscale. The remote SEM activity was structured to address different practices of laboratory inquiry. Secondary chemistry students were requested to prepare at home suitable samples for the SEM device, send the samples to a research institute, and operate the SEM device remotely to study their samples. The scientists and the science teacher supported the students, for example, by providing information on how the SEM works and how it is used in contemporary scientific research. A qualitative analysis of data collected during the activity and students’ open-ended feedback in a postquestionnaire identified different inquiry practices according to acceptable science education standards. The “hands-on” practices (e.g., preparing SEM samples and collecting data) engaged the students more in the SEM activity than did the “minds-on” inquiry practices (e.g., analyzing and interpreting data). Students’ emotions were also evaluated for the remote SEM setting and the school setting using a semantic differential emotions questionnaire (SDEQ). The paper describes the development of the SDEQ and its validation process. Addressing the emotional aspects and applying the SDEQ revealed that the remote SEM learning environment induces positive emotions for students; these emotions cannot be predicted by students’ emotions in a school science setting. This shows the potential of the “emotions-on” aspect to shed new light on inquiry practices and support the inclusion of different students in developing laboratory skills.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call