Abstract

Understanding large-scale biodiversity patterns and underlying mechanisms during the formation process is essential for guiding conservation efforts. However, previous studies on the identification and formation mechanism of diversity hotspots in China were often limited to a single (alpha) diversity metric, while multiple (beta or zeta) diversity has rarely been used for exploring drivers and conservation actions. Here, a comprehensive species distribution dataset consisting of representative families of three insect orders was compiled to explore biodiversity hotspots based on different algorithms. Furthermore, to assess the effects of environmental factors on hotspots, we fitted generalized additive mixed-effects models (GAMMs) for species richness, generalized dissimilarity models (GDMs) and multi-site generalized dissimilarity modeling (MS-GDM) for the total beta and zeta diversity. Our results showed that biodiversity hotspots were mainly concentrated in central and southern China, especially in mountainous areas with complex topography, which indicated the insects' affinity to montane environments. Further analyses based on multiple models showed that water-energy factors exerted the strongest explanatory power for the insect assemblage diversity in hotspots of both alpha and beta (or zeta) levels. Additionally, anthropogenic factors also exerted a significant effect on hotspots, and this effect was higher for beta diversity than for alpha diversity. Overall, our study elucidates a comprehensive analysis of the identification and underlying mechanism of biodiversity hotspots in China. Despite several limitations, we still believe that our findings can provide some new insights for conservation efforts in Chinese hotspots.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call