Abstract

Changes in electrical impedance have previously been used to measure fluid flow rate in microfluidic channels. Ionic redistribution within the electrical double layer by fluid flow has been considered to be the primary mechanism underlying such impedance based microflow sensors. Here we describe a previously unappreciated contribution of microchannel deformation to such measurements. We found that flow-induced microchannel deformation contributes significantly to the change in electrical impedance of solutions, in particular to those solutions producing an electrical double layer in the order of a few tens of nanometers (i.e., containing relatively high ionic strength). Since the flow velocity at the measurement surface is near zero, due to the laminar nature of the flow, the contribution of the double layer under the conditions mentioned above should be negligible. In contrast, an increase in the fluid flow rate results in an increase in the microchannel cross-sectional area (because of higher local pressure), therefore, producing a decrease in solution resistance between the two electrodes. Our results suggest that microflow sensors based on the concept of elastic deformation could be designed for in situ monitoring and fine control of fluid flow in flexible microfluidics. Finally, we show that purposefully engineering a larger deformability of the microchannel, by changing the geometry and the Young's modulus of the microchannel, enhances the sensitivity of this flow rate measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.