Abstract

NOX rarely binds with labile oxygens of catalytic solids, whose Lewis acidic (LA) species possess higher binding strengths with NH3 (ENH3) and H2O than Brönsted acidic counterparts (BA--H+; -OH), oftentimes leading to elevate energy barrier (EBARRIER) and weaken H2O tolerance, respectively. These limit NH3-assisted wet NOX reduction via Langmuir-Hinshelwood-type or Eley-Rideal (ER)-type model on LA species, while leaving ER-type analogue on BA--H+ species proper to reduce wet NOX. Given hard-to-regulate strength/amount of -OH species and occasional association between ENH3 and EBARRIER, Ni1V2O6 (Ni1) was rationally chosen as a platform to isolate mono-dentate SO32-/SO42- species for use as BA--H+ bonds via protonation to increase collision frequency (k’APP,0) alongside with disclosure of advantages of SO32-/SO42--functionalized Ni1V2O6 (Ni1-S) over Ni1 in reducing wet NOX. Ni1-S outperformed Ni1 in achieving a larger BA--H+ quantity (k’APP,0↑), increasing H2O tolerance, and elevating oxygen mobility, thus promoting NOX reduction activity/consequences under SO2-excluding gases. V2O5-WO3 composite simulating a commercial catalyst could isolate mono-dentate SO32-/SO42- species and served as a control (V2O5-WO3-S) for comparison. Ni1-S was superior to V2O5-WO3-S in evading ammonium (bi-)sulfate (AS/ABS) poison accumulation and expediting AS/ABS pyrolysis efficiency, thereby improving AS/ABS resistance under SO2-including gases, while enhancing resistance against hydro-thermal aging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call