Abstract
The origin of β-relaxation in metallic glasses is still not fully understood, and the guidance of slow atoms for caged dynamics and β-relaxation is rarely mentioned. Using molecular dynamics simulations, we reveal the bridging role of slow atoms on unusual caged dynamics and β-relaxation. In the stage of unusual caged dynamics, slow atoms are bounded by neighboring atoms. It is difficult for the slow atoms to break the cage, producing more high-frequency vibration, which causes more atoms to jump out of the cage randomly in the next stage. Precisely, the movement of the slow atoms changes from individual atoms vibrating inside the cage and gradually breaking out of the cage into a string-like pattern. The string-like collective atomic jumps cause decay of the cages, inducing β-relaxation. This situation generally exists in binary systems with the large atomic mass difference. This work offers valuable insights for understanding the role of slow atoms in unusual caged dynamics and β-relaxation, complementing studies on the origin of β-relaxation in metallic glasses and their glass-forming liquids.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.