Abstract

Driven by environmental concerns, chemical fumigants are no longer allowed in many countries. Therefore, other strategies for reducing fungal inoculum in soils and on crop debris are being explored. In the present study, several Brassicaceae crops were screened for their potential to control Fusarium gramineaum and Fusarium poae mycelial growth in an in vitro inverted Petri dish experiment. Volatile production was measured using gas chromatography-mass spectrometry headspace analysis. A selection of cultivars from each crop species was further investigated using a pot experiment with maize. Ethiopian mustard (Brassica carinata) and brown mustard (Brassica juncea) released volatile allyl isothiocyanate (AITC) and a higher concentration of AITC was correlated with a better fungal growth reduction in the in vitro screening. Brown mustard cultivar Etamine completely inhibited growth of both Fusarium spp. Pure AITC in a solution with methanol resulted in a sigmoid dose-response curve for both Fusarium spp. tested. Fusarium poae appeared to be more tolerant to AITC than F. graminearum. A pot experiment revealed that the incorporation of brown mustard plant material could alleviate the clear negative effect of F. graminearum infection on maize growth. The present study demonstrated the correlation between the fungistatic effect of biofumigation crops on Fusarium spp. and their production of volatile AITC in vitro, without the addition of exogenous enzymes, and confirmed the biofumigation potential of brown mustard in a pot experiment with maize. These results may help farmers when selecting a green manure crop suitable for biofumigation. © 2020 Society of Chemical Industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.