Abstract

Two-dimensional (2D) materials with anisotropic electronic structures possess promising prospect for ultra-scaled field effect transistors (FETs), such as black phosphorene. Here, the quantum transport properties of anisotropic 2D group VA-VA monolayers with puckered configuration are studied in 5 nm FETs using density functional theory and nonequilibrium Green’s function. Through evaluating and comparing the transport effective mass ( $\text{m}_{x}$ ) and density of state ( $\text{m}_{\text {DOS}}$ ) of these 2D group VA-VA monolayers, we uncover the physical mechanism of the anisotropic electronic structures for the performances of 2D ultra-short FETs. These electronic structures can make the channel with a small $\text{m}_{x}$ hold a high $\text{m}_{\text {DOS}}$ , or the channel with heavy $\text{m}_{x}$ hold a small $\text{m}_{\text {DOS}}$ , which is beneficial to obtain high saturation current, steep sub-threshold swing, and thus a high on-current. Hence, the strong anisotropic electronic structure can be regarded as a target feature for designing high performance 2D FETs, which provides a guideline for exploring excellent 2D channels for ultra-scaled electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.