Abstract

Cerebral ischemic stroke is one of the foremost global causes of death and disability. Due to inadequate knowledge in its sequential disease mechanisms, therapeutic efforts to mitigate acute ischemia-induced brain injury are limited. Recent studies have implicated epigenetic mechanisms, mostly histone lysine acetylation/deacetylation, in ischemia-induced neural damage and death. However, the role of lysine methylation/demethylation, another prevalent epigenetic mechanism in cerebral ischemia has not undergone comprehensive investigation, except a few recent reports, including those from our research cohort. Considering the impact of sex on post-stroke outcomes, we studied both male and female mice to elucidate molecular details using our recently developed Internal Carotid Artery Occlusion (ICAO) model, which induces mild to moderate cerebral ischemia, primarily affecting the striatum and ventral hippocampus. Here, we demonstrate for the first time that female mice exhibit faster recovery than male mice following ICAO, evaluated through neurological deficit score and motor coordination assessment. Furthermore, our investigation unveiled that dysregulated histone lysine demethylases (KDMs), particularly kdm4b/jmjd2b are responsible for the sex-specific variance in the modulation of inflammatory genes. Building upon our prior reportage blocking KDMs by DMOG (Dimethyloxalylglycine) and thus preventing the attenuation in H3k9me2 reduced the post-ICAO transcript levels of the inflammatory molecules and neural damage, our present study delved into investigating the differential role of H3k9me2 in the regulation of pro-inflammatory genes in female vis-à-vis male mice underlying ICAO-induced neural damage and recovery. Overall, our results reveal the important role of epigenetic mark H3k9me2 in mediating sex-specific sequential events in inflammatory response, elicited post-ICAO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.