Abstract

In order to improve the quality of applications, such as recommendation or retrieval in knowledge-based service system, it is very helpful to uncover research topics of academic communities in scientific collaboration network (SCN). Previous research mainly focuses on network characteristics measurement and community evolution, but it remains largely understudied on how to uncover research topics of each community. This paper proposes a nonjoint approach, consisting of three simple steps: (1) to detect overlapping academic communities in SCN with the clique percolation method, (2) to discover underlying topics and research interests of each researcher with author-topic (AT) model, and (3) to label research topics of each community with top N most frequent collaborative topics between members belonging to the community. Extensive experimental results on NIPS (neural information processing systems) dataset show that our simple procedure is feasible and efficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.